

Exercise Sheet #8

Course Instructor: Ethan Ackelsberg
Teaching Assistant: Felipe Hernández

P1. This exercise shows that the locally finite assumption cannot be removed in Theorem 6.15. (The measure μ in part (b) is not locally finite). Let (X, \mathcal{U}) be the topological space defined by $X := \mathbb{N} \cup \{\infty\}$ and

$$\mathcal{U} := \{U \subset X \mid U \subset \mathbb{N} \text{ or } |U^c| < \infty\}.$$

Thus (X, \mathcal{U}) is the (Alexandrov) one-point compactification of the set \mathbb{N} of natural numbers with the discrete topology. (If $\infty \in U$ then the condition $|U^c| < \infty$ is equivalent to the assertion that U^c is compact).

- (a) Prove that (X, \mathcal{U}) is a compact Hausdorff space and that every subset of X is σ -compact.
Prove that the Borel σ -algebra of X is $\mathcal{B} = 2^X$.
- (b) Let $\mu : 2^X \rightarrow [0, \infty]$ be the counting measure. Prove that μ is inner regular, but not outer regular.